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Phase lock loops (PLLs) are key
components of modern communi-
cation systems. Frequency synthe-

sizers, FM demodulators and clock recov-
ery circuits are some applications of
PLLs. An important aspect of PLL
design is the steady state stability of the
loop.  This article examines this aspect of
PLL design, particularly the effect of
loop filter on PLL stability.

PLLs are negative feedback control
systems comprising of a phase-frequency
detector (PD), a loop filter, a voltage-con-
trolled oscillator (VCO) and a frequency
divider. The function of the PD is to generate an
output waveform based on the difference in
phase (and frequency) between the input signal
and a fixed reference. This is followed by a loop
filter,  normally a lowpass filter (LPF), whose
function is to filter out any high frequency har-
monics from the phase detector and to provide a
DC signal output; followed by a VCO that gen-
erates a high frequency signal controlled by the
DC input signal. A sample of the VCO output
signal is then fed back to the input of the PD as
the input waveform and compared in phase (and
frequency) to a fixed reference. In a locked con-
dition, the PLL output signal is locked in phase
(and frequency) to the fixed input reference, i.e.
the output phase has a fixed differential from
the input phase.  

According to control loop theory,  the transfer
function of the PLL is (assuming N = 1):

(1)

where,

T(s) is the closed loop PLL transfer function in
the frequency domain (θI and θ0 being the
input and output signal respectively),

G(s) = KPF(s)K0/s is the open loop transfer
function (complex) of the PLL,

KP   is the transfer function of the phase detec-
tor in Volts/ Hz,

K0/s is the transfer function of the VCO in Hz/
volts, and

F(s) is the transfer function of the loop filter.

Note that this is the transfer function of the
PLL when the loop is closed. The block diagram
of the PLL is shown in Figure 1.
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� Figure 1. Block diagram of a PLL
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Before we examine the PLL closed loop
transfer function in detail, it is important to
examine the stability of the PLL. A PLL is
unstable when the denominator of the closed
loop transfer function is equal to zero. For this
to occur,

1 + G(s) = 0

G(s) = –1, or (2)

G(s) = 0 dB @ ∠–180° (magnitude/phase angle)

Hence, the PLL is unstable at the frequency
where the magnitude of the open loop transfer
function is unity and the phase angle is –180
degrees. Because stability is an important
aspect of any PLL design, the condition of unity
open loop gain and a phase angle of 180 degrees
must be avoided.

PLL response with no loop filter
To further understand the PLL transfer

function response and stability, let us examine
the case when there is no loop filter. With F(s)
= 1 (i.e. no loop filter), the PLL closed loop
transfer function becomes (3),

which is the transfer function of a LPF with
DC gain of unity and a 3 dB cutoff frequency of
KP × K0.  Therefore, an increase in the DC gain
of the phase detector and/ or the VCO results
in a wider loop  which in turn results in higher
phase noise in the PLL. Also, the open loop
gain has a slope of 6 dB per octave or 20 dB per decade
for all frequencies. The phase angle is always –90
degrees at all frequencies. Hence with no low-pass filter
in the loop the PLL is always stable, according to the
stability criteria. But the main drawback of a PLL
design with no loop filter is that the designer has little
or no control over the loop response. Figures 2 and 3
show a plot of the open and closed loop transfer func-
tion (gain and phase vs. frequency). The plot was done
on MatLab using the absolute value function (called
abs) to compute the magnitude of the transfer function
and the angle function (called angle) to compute the
phase angle. Also, the plot commands — plot (w, abs)
and plot (w, angle) — were used to plot magnitude and
phase vs. frequency.

PLL with a single loop filter
In most PLL designs, a low pass filter is normally

used. The function of a LPF is to filter out any high-fre-
quency harmonics in the loop that might cause the loop
to go out of lock, and also to stabilize the loop.  Adding a
LPF also affects the loop response including parameters
such as the loop time response τr, loop bandwidth ωC and
the damping factor ∂ of the loop. Figure 4 shows the low
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� Figure 2. PLL open loop transfer function with no loop filter.

� Figure 3. PLL closed loop transfer function with no loop filter.

� Figure 4. Single pole loop filter.
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pass filter that is commonly used in PLL designs.  The
filter is a one pole low-pass filter with a 3 dB cutoff fre-
quency at ωL.

Therefore, in this case,

(4)

Substituting equation 4 in equation 1 gives

(5)

where,

KV = KPK0
ωN = (KVωL)½

∂ = ωN/(2KV)

Using a low-pass filter with a cutoff frequen-
cy of ωL, the PLL closed loop response is a 2nd
order low-pass filter transfer function, centered
at the VCO frequency. A characteristic of the
second order low pass response is that the slope
of the filter drops at a rate of 12 dB/octave. The
term ωN is defined as the natural frequency of
the loop and the term ∂ is defined as the damp-
ing factor of the loop. Using equation 5 we can
derive ωC which is:

ωC is the 3 dB bandwidth of the PLL.
Knowing ωC, we can determine the time it takes
for the PLL output to rise to 90 percent of its
final value, which is approximately

τr = 2.2/ωC

Therefore, given the cutoff frequency ωL of
the low pass filter and the values of KP and K0,
we can determine the natural frequency ωN of
the loop, and subsequently determine the PLL
loop bandwidth ωC. Knowing this, we can then
calculate the time τr it takes for the PLL to set-
tle to its final frequency value.

In order to determine the stability of the loop
with a single pole low-pass filter in the loop, we

must examine the open loop transfer function of the
PLL. As stated before, the open loop transfer function is
given by the function G(s) and is equal to:

(6)

The open loop transfer function has two poles — one
at DC and the other at ωL. Note that at every pole, the
gain slope drops at a slope of 6 dB per octave. The gain
at DC is infinite; as the frequency increases, the magni-
tude of the transfer function drops at a slope of 6 dB per
octave (due to the presence of the pole at DC). When the
frequency reaches ωL, the gain drops at a slope of anoth-
er 6 dB per octave (a total slope of 12 dB per octave after
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� Figure 5. PLL open loop response with single pole LPF.

� Figure 6. PLL closed loop response with single pole LPF.
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two poles).  The PLL is unstable at the frequency where
open loop gain crosses the unity gain line at a slope of 12
dB per octave and the phase is –180 degrees. This condi-
tion can be observed by plotting the open loop gain and
phase response using MatLab. The condition of instabil-
ity can be avoided by the selection of the pole frequency
of the loop filter. As the pole frequency ωL decreases, the
open loop gain intersects the unity gain axis at 12 dB/
octave, the phase angle approaches –180 degrees and the
PLL becomes unstable. The PLL  approaches instability.
This can be observed either by decreasing ωL while
observing the gain and phase response on Matlab or by
examining the phase response of the open loop transfer
function, which is

ϕ=  –tan–1 –(ωL/ω)

Clearly as ωL decreases, the phase angle approaches
–180 degrees.

One disadvantage of using a single pole filter is that
both the closed loop bandwidth and the damping factor
of the closed loop response of the PLL depend on the
loop filter bandwidth. The designer cannot indepen-
dently set the loop bandwidth without affecting the
amount of transient overshoot. This deficiency can be

easily overcome if a pole-zero loop filter is used. See
Figures 5 and 6 for the open and closed loop response of
the PLL with a single pole loop filter.

When designing a PLL, it is important to choose the
damping factor such that the loop time response has
very little overshoot. The percent of overshoot is defined
as the time it takes for a PLL to settle at a given fre-
quency. A high percent overshoot can cause the loop to
go out of lock. Figure 7 is a plot of the closed loop gain
response vs. frequency for different values of damping
(from = 0.1 to 0.9 in increments of 0.1, 0.707 being the
design goal). 

PLL response with a pole-zero loop filter
Another way to control the loop response is by using

a pole-zero filter in the PLL (see Figure 8). A pole-zero
filter is a low pass filter with a pole frequency ωP and a
zero frequency ωZ. The addition of a pole in the transfer
function causes the transfer function slope to drop at a
rate of 6 dB per octave whereas the addition of a zero in
the PLL transfer function has the opposite effect. For
example, the addition of a zero frequency increases the
slope by a 6 dB/ octave.  This phenomenon is illustrated
in Figure 9.

The pole-zero filter transfer response is given by

(7)

where ωZ is the zero frequency and ωP is the pole fre-
quency. The open loop transfer function is:
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� Figure 7. Closed loop gain response vs. frequency for dif-
ferent damping factors (∂∂).

� Figure 8. Pole-zero filter.
� Figure 9. PLL open loop gain response with a pole-zero

loop filter.
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In this case, the location of the pole is always before
the zero frequency.  Given the pole frequency location, a
zero can be placed after the pole (as shown in the Figure
9) so as to avoid the magnitude from crossing the unity
gain axis at a slope of 12 dB per octave, and therefore
avoiding instability.

To determine the closed loop response, simply plot
T(s),  

(9)

where

The transfer function of T(s) is

(10)

Therefore, selecting the pole frequency sets the nat-

ural frequency (and subsequently the loop bandwidth)
and selecting the zero (based on the pole location in the
open loop gain response) determines the desired per-
centage overshoot. Therefore, a pole-zero filter allows
the designer to select the loop bandwidth and the damp-
ing factor independently and still achieve stability.

Summary
Steady-state stability is an important criterion in

PLL design. Stability can be determined by examining
the transfer function of the PLL in an open state. As
seen, a condition of open loop gain of unity and a phase
angle of –180 degrees must be avoided for stable opera-
tion of the PLL. This can be accomplished by the proper
selection of the loop filter parameters. �
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